

PUBLIC

Code Assessment

of the PSM

Smart Contracts

January 24, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 12

8 Notes 13

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Decentralized USD team,

Thank you for trusting us to help Decentralized USD with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of PSM according
to Scope to support you in forming an opinion on their security risks.

Decentralized USD implements a Peg Stability module (PSM) for USDD V2. The PSM is a system
designed to help maintain the peg of USDD by enabling the direct exchange of USDD for supported
stablecoins (and vice versa) at a fixed exchange rate of 1:1.

The most critical subjects covered in our audit are asset solvency, functional correctness, and access
control. The reported issue Incorrect USDT Address has been resolved, hence security regarding all the
aforementioned subjects is high.

The general subjects covered are gas optimizations and specification. Security regarding both subjects is
high.

In summary, we find that the codebase provides an good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the PSM repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 16 Dec
2024

9a28413b5bc354e182eb48fea472bc385b981afc Initial Version

2 24 Jan
2025

c368445876334664d6e58b7e186c78162271ff93 After Intermediate Report

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

The following files were in the scope of this review:

src/
 join-5-auth.sol
 join-8-auth.sol
 join-auth.sol
 psm.sol

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section is considered out of scope. In particular, the
tests and external dependencies are not part of this audit.

In addition, the following known risks are out of the scope of this review:

• Holding a significant amount of centralized tokens in the PSM, like USDT, carries inherent risks of
centralization.

• Repeatedly swapping Gem for USDD might efficiently bloat the global debt to Line and block
borrowing with other collaterals.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Decentralized USD offers a Peg Stability module (PSM) for USDD V2. The PSM is a system designed to
help maintain the peg of USDD by enabling the direct exchange of USDD for supported stablecoins (and

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

vice versa) at a fixed exchange rate of 1:1. The system allows users to trade stablecoins into USDD
(sellGem) or trade USDD into stablecoins (buyGem).

This implementation is based on a fork of the MakerDAO PSM contract, with modifications to provide
additional operational control. The PSM interacts with a fork of the VAT, a core MakerDAO accounting
system.

The system is composed of two main types of contracts:

1. The PSM contract: UsddPsm

2. The Join contracts: AuthGemJoin, AuthGemJoin5, AuthGemJoin8

2.2.1 PSM Contract
The UsddPsm contract is functionally similar to the MakerDAO PSM contract, with the primary addition of
two boolean parameters:

• sellEnabled: Enables or disables the sellGem function.

• buyEnabled: Enables or disables the buyGem function.

The contract provides two main functions:

• sellGem(address, uint256): Converts the stablecoin gem into USDD. When invoked, the
stablecoin is deposited into the associated Join contract and accounted by the VAT, and the
user receives USDD. A fee defined by the tin parameter is charged and credited to the VOW.

• buyGem(address, uint256): Converts USDD into the stablecoin gem. When invoked,
USDD is exited to the user by the USDD Join after the VAT updates the internal accounting. A
fee defined by the tout parameter is charged and credited to the VOW.

The contract also includes administrative functions, which are protected by the auth modifier. The auth
modifier restricts access to wards, that is, authorized addresses. These administrative functions include:

• the rely and deny functions to add or remove a ward,

• the file function to change the parameters of the PSM (tin, tout, sellEnabled,
buyEnabled),

• the hope and nope functions to enable or disable the ability of another address to interact with
the VAT on behalf of the contract.

2.2.2 Join Contracts
Join contracts are implemented to faciliate the interaction between the PSM and different stablecoins.
They handle deposits and withdrawals of stablecoins while managing their corresponding balances in the
VAT.

Each Join contract provides two primary functions:

• join(address, uint256, address): Deposits a specific stablecoin. The stablecoin is
transferred to the Join contract, which then increase the ilk balance of a specific urn in the VAT
with slip(). Note this function is restricted to the wards.

• exit(address, uint256): Withdraws a specific stablecoin. The Join decreases the ilk
balance of a specific urn in the VAT with slip(), and then transfer the gem token to the user.

And some administrative functions:

• rely and deny functions to add or remove a ward.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• cage function to disable the join and exit functions.

There are three types of Join contracts:

• AuthGemJoin: Basic token adapter for tokens with 18 decimals.

• AuthGemJoin5: Adapter for stablecoins with fewer than 18 decimals of precision (e.g., USDC
with 6 decimals).

• AuthGemJoin8: Adapter for upgradable stablecoins with fewer than 18 decimals (e.g., GUSD
with 2 decimals). An extra function setImplementation is added to set the permitted
implementations for this token.

2.2.3 Roles & Trust Model
It is assumed that the wards (i.e., administrators) in the system are configured as follows for each
contract:

• PSM Contracts: Only the DsPauseProxy is granted ward privilege to manage administrative
functions.

• Join Contracts: Both the DsPauseProxy and their corresponding PSM contract are granted
ward privilege, allowing the PSM to call join().

The DsPauseProxy is a governance contract within USDD v2 system that holds elevated permissions to
execute administrative functions across the system. It is considered fully trusted within the scope of this
audit.

The following assumptions are further made for the ilk of PSM:

• There are no other urns for the same ilk.

• Stability fee is always zero for the ilk (ilk.rate==RAY).

• The spot price for gem is always 1 (ilk.spot==RAY).

• No liquidations on this specific ilk.

Weird tokens such as rebasing tokens and tokens with transfer fees are not expected to be used. The
system is also subject to the potential risks of upgradability, blacklisting, pausing, and frozen of the gem
tokens.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedIncorrect USDT Address

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

6.1 Incorrect USDT Address
Correctness Critical Version 1 Code Corrected

CS-USDD-PSM-001

AuthGemJoin5 hardcoded the USDT token address (USDTAddr) as a constant in order to execute
tailored logic for handling USDT transfers. However, the hardcoded address does not point to the USDT
address on Tron mainnet.

As there is no contract published at this address on mainnet, the low level calls to this address will always
succeed. Hence the call of safeTransfer() and safeTransferFrom() will both silently succeed.
Consequently, anyone can come to the PSM related to this Join and call sellGem() to print USDD for
free.

Code corrected:

The hardcoded address has been replaced with the correct address of USDT on mainnet.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Hardcoded Function Selector
Informational Version 1 Acknowledged

CS-USDD-PSM-002

The safeTransfer and safeTransferFrom functions use hardcoded function selectors
(0xa9059cbb and 0x23b872dd) for the transfer and transferFrom functions, respectively, which
reduces readability and makes the code less intuitive. Replacing these hardcoded values with interfaces
or selectors derived from the function signatures would improve clarity and maintainability.

Acknowledged:

Decentralized USD has acknowledged this issue and decided not to change it.

7.2 Inconsistent Coding Style
Informational Version 1 Acknowledged

CS-USDD-PSM-003

The file function in psm.sol uses inconsistent braces for conditional branches. Some branches (e.g.,
tin, tout) omit braces for single statements, while others (e.g., sellEnabled, buyEnabled) include
them.

Acknowledged:

Decentralized USD has acknowledged the inconsistent coding style and decided not to change it.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Proper Configuration of PSM, Join, and Ilk
Note Version 1

Proper configuration is critical to ensure the PSM operates as expected. Each PSM must be paired with
its specific Join contract, and the Join contract must grant the PSM ward access. Additionally, the PSM
must be associated with a dedicated Ilk in the VAT. The Ilk must be configured with appropriate risk
parameters, such as the liquidation ratio, the stability fee, and the debt ceiling.

Decentralized USD - PSM - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 PSM Contract
	2.2.2 Join Contracts
	2.2.3 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Incorrect USDT Address

	7 Informational
	7.1 Hardcoded Function Selector
	7.2 Inconsistent Coding Style

	8 Notes
	8.1 Proper Configuration of PSM, Join, and Ilk

